Carbon in palladium catalysts: A metastable carbide.

نویسندگان

  • Nicola Seriani
  • Florian Mittendorfer
  • Georg Kresse
چکیده

The catalytic activity of palladium toward selective hydrogenation of hydrocarbons depends on the partial pressure of hydrogen. It has been suggested that the reaction proceeds selectively toward partial hydrogenation only when a carbon-rich film is present at the metal surface. On the basis of first-principles simulations, we show that carbon can dissolve into the metal because graphite formation is delayed by the large critical nucleus necessary for graphite nucleation. A bulk carbide Pd(6)C with a hexagonal six-layer fcc-like supercell forms. The structure is characterized by core level shifts of 0.66-0.70 eV in the core states of Pd, in agreement with experimental x-ray photoemission spectra. Moreover, this phase traps bulk-dissolved hydrogen, suppressing the total hydrogenation reaction channel and fostering partial hydrogenation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation and Recovery of Platinum and Palladium from Spent Petrochemical Catalysts Using Activated Carbon, Analysis of Two Kind of Most Used Catalysts in Petro Chemistry

The goal of this work is the separation and recovery of platinum and palladium from spent catalyst. The recovery consisted of separating the maximum amount of platinum and palladium from catalysts and changing them into usable forms. The petroleum and petrochemical units use Pt and Pd catalyst for reactions such as reforming and hydrogenation. Because these materials contain valuable metals...

متن کامل

Palladium nanoparticles supported on carbon black powder as an effective anodic catalyst for application in a direct glucose alkaline fuel cell

Palladium nanoparticles supported on carbon black powder (Vulcan XC-72) nanocomposite (Pd/C) are synthesized as the catalyst for the anodic oxidation of glucose for use in a direct glucose alkaline fuel cell (DGAFC). Characterization of the catalyst is carried out using physical and electrochemical methods. It is observed that Palladium nanoparticles are uniformly dispersed onto the carbon blac...

متن کامل

Effect of the carbon nanotube basicity in Pd/N-CNT catalysts on the synthesis of R-1-phenyl ethyl acetate

Catalytic activities of palladium catalysts supported on activated carbon and carbon nanotubes were investigated in the one-pot synthesis of R-1phenylethyl acetate in combination with an immobilized lipase in toluene. Palladium catalysts on carbon nanotubes with nitrogen-containing surface groups were prepared by incipient wetness impregnation. The basic N-CNT support was synthesized by post-tr...

متن کامل

Synergistic effect of tungsten carbide and palladium on graphene for promoted ethanol electrooxidation.

The synergistic effect of WC and Pd has large benefit for ethanol electrooxidation. The small-sized Pd nanoparticles (NPs) decorated tungsten carbide on graphene (Pd-WC/GN) will be a promising anode catalyst for the direct ethanol fuel cells. The density functional theory (DFT) calculations reveal that the strong interaction exists at the interface between Pd and WC, which induces the electron ...

متن کامل

Highly active palladium/activated carbon catalysts for Heck reactions: correlation of activity, catalyst properties, and Pd leaching.

A variety of palladium on activated carbon catalysts differing in Pd dispersion, Pd distribution, Pd oxidation state, and water content were tested in Heck reactions of aryl bromides with olefins. The optimization of the catalyst (structure-activity relationship) and reaction conditions (temperature, solvent, base, and Pd loading) allowed Pd/C catalysts with very high activity for Heck reaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 132 2  شماره 

صفحات  -

تاریخ انتشار 2010